
EC2 Gold AMI Automation

CHC Gold AMIs

At CHC, cloud security starts with the AMIs that are modified into the "Gold AMIs", which are then used as the base for applications and services
developed at CHC.

The Gold AMIs are configured with:

A hardened OS
the AWS CLI installed
Trend Micro DSA installed
aws-cfn-bootstrap (to provide cfn-init)
Filebeat client installed
Monitoring package installed
CloudHealth agent installed
SSH keys are removed by default after AMI creation, but before AMI release

The fully-automated Gold AMI Automation process is diagrammed in Figure 1 below:

Figure 1 - Overall GOLD AMI Automation process

Building Gold AMIs with Automation

To create a process that is repeatable while also minimizing the opportunity for , automation issoftware flaws or vulnerabilities to be introduced
key. The automation for building CHC Gold AMIs was built in conjunction with AWS resources, and is now in use to keep all images - Linux and
Windows - used by CHC in the cloud in compliance with the security policies defined by InfoSec. Starting with the latest AWS Marketplace AMIs
for each of our supported OS types, the automation adds the agents and packages required, and tests to make sure that any potential security
concerns are addressed (i.e. SSH keys removed, world-writable files are not allowed, etc.).

Initially, the automation was triggered manually by loading a zip file of the playbooks to create the CHC Gold version of the followingansible
supported OS types:

Amazon Linux
CentOS 7
RHEL 7
Amazon Linux optimized for ECS
Windows 2012r2
Windows 2016
Deep Learning **

** Deep Learning is a special application-specific OS type that includes specific exceptions granted by InfoSec to some of the standard security
restrictions. The Service Request ID of the exception is included in the playbooks for this application.

Projects containing the playbooks for each of these OS types are:

AMI Name Gitlab Project Location

Amazon Linux

Amazon Linux (ECS optimized)

RHEL-7

CentOS-7

Deep Learning

Windows 2012r2

Windows 2016

The EC2 Gold AMI Automation (EC2G) service monitors the AWS Marketplace looking for new AMI releases. When a new AMIami-check
becomes available the EC2G system starts the automation process to create a new base AMI for use within CHC. The automation process can
also be started manually.

 Currently, CIE Ops will manually run the automation process at the end of each month until all of the underlying automation is completed.NOTE:
Additionally, in some cases the automation for Windows images must be run repeatedly to ensure a successful process.

Diagram of the EC2 Gold AMI Automation

Running manually, the first step a developer does is to create a zip file for the OS type, using one of the following names:

amazon.zip
amazon-ecs.zip
centos-7.zip
rhel-7.zip
deep-learning-amz.zip
win2012r2.zip
win2016.zip

Each of the OS projects contains a script named , which creates the zip file, uploads it to S3, and then executes thelaunch_automation.sh
command to run the automation with the required parameters for that specific OS type.

An illustration of this automation is shown below in Figure 2:

Figure 2 - AMI Check process

If all steps complete successfully, including a compliance check against an instance created with the newly-built AMI, and the build is approved,
the new AMI ID is written to the . Checking that all steps have passed and even approving the AMI build may be done through aParameter Store
command-line/script. If the build is not approved - either manually or by script - the Parameter Store value is left unchanged.

Parameter Store

All Base AMI parameter store entries use the following format convention:

/nimbus/ami/base/<unique operating system type name>

For example:

/nimbus/ami/base/centos-7
/nimbus/ami/base/deep-learning-amz

When Base parameter store values are changed, they automatically published to the SNS topic.cie-ami-base

Gold AMI parameter store entries use the following format convention:

/nimbnus/gold/<operating system type - linux or windows>/< >unique operating system type name

For example:

/nimbus/gold/linux/centos-7
/nimbus/gold/windows/win2012r2

1.
2.
3.
4.

5.

When Gold values are changed, they automatically published to the SNS topic.parameter store cie-ami-gold

AMI-Check

The ami-check service is scheduled to run daily at 4:00 AM PST. Currently, ami-check uses a static list of AMIs to check, but it will be refactored
to leverage nimbus-cli and pull the list of AMIs from that. If a new version of the AMI is discovered by ami-check, the appropriate base AMI
parameter store value will be updated.

The ami-check project is located in the gitlab repository at:

Nimbus-AmiAwsLambda

Nimbus-AmiAwsLambda is (subscriber) of the SNS topic. It receives the SNS message, parses it for the appropriatea target cie-ami-base
values so that the Gold AMI Automation may be triggered for the specific AMI that was updated.

The Nimbus-AmiAwsLambda project is located in the gitlab repository at: .

Build Automation

Nimbus-AmiAwsLambda , which takes the base AMI and hardens it to CHC security standards.starts the automation
The resulting proposed AMI is then tested to ensure that it complies with CHC security standards.
The AMI then waits for manual approval or rejection.
If the AMI is approved, the appropriate gold AMI parameter store is updated. Updating the gold AMI parameter store will publish to the ci

 SNS topic. e-ami-gold
If the AMI is rejected (not approved), the build automation process stops the build, cleans up any artifacts created during the build
process, and then terminates. No values in the parameter store are updated.

The Nimbus-AmiAwsLambda project is located in the gitlab repository at: .

Developer Notes

For everything to work correctly, the filenames must match exactly. .DO NOT deviate from the standard names

Creation of the base AMI parameter store entries , as is adding the base AMI parameter store information tois initially a manual process
ami-check. (Note: this may be refactored to use the nimbus-cli in the future.)

Base AMI parameter wiring is accomplished within the project, including:ami-check

Creating the SNS topiccie-ami-base
Creating and putting the CloudWatch rule: indicating updates to the base AMI parameter store value should publish to an SNS topic
Creating and putting the CloudWatch target: linking the CloudWatch rule and the SNS topic to be published to
Updating the base AMI parameter store value

Please consult the current code and documentation of for more details.ami-check

Gold AMI parameter wiring is for the most part accomplished in the project in ami-aws-service gold-automation-document.json
The following sections of the should be noted:gold-automation-document.json

AutomationUpdateSsmParamLambdaPolicy: defines permissions for updating parameter store and creating event rules.
AutomationUpdateSsmParamLambdaFunction:

Creates and puts the CloudWatch rule: indicating updates to the Gold AMI parameter store value should publish to an SNS topic
Creates and puts the CloudWatch target: links the CloudWatch rule with the SNS topic to publish to
Updates the Gold AMI parameter store value

Additional References

Glossary and Acronym List (GAL)

